Proper biharmonic maps on tangent bundle

نویسندگان

چکیده

This paper, we define the Mus-Gradient metric on tangent bundle $TM$ by a deformation non-conform of Sasaki over an n-dimensional Riemannian manifold $(M, g)$. First investigate geometry and characterize new class proper biharmonic maps. Examples maps are constructed when all factors Euclidean spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication on the Tangent Bundle

Manifolds with a commutative and associative multiplication on the tangent bundle are called F-manifolds if a unit field exists and the multiplication satisfies a natural integrability condition. They are studied here. They are closely related to discriminants and Lagrange maps. Frobenius manifolds are F-manifolds. As an application a conjecture of Dubrovin on Frobenius manifolds and Coxeter gr...

متن کامل

Stability of F-biharmonic maps

This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.

متن کامل

Gromoll type metrics on the tangent bundle

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes the Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. We found conditions under which T (M) is almost Kählerian, locally conformal Kählerian or Kählerian or wh...

متن کامل

Harmonic Maps and Biharmonic Maps

This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

متن کامل

A Tangent Bundle on Diffeological Spaces

We define a subcategory of the category of diffeological spaces, which contains smooth manifolds, the diffeomorphism subgroups and its coadjoint orbits. In these spaces we construct a tangent bundle, vector fields and a de Rham cohomology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics

سال: 2022

ISSN: ['2336-1298', '1804-1388']

DOI: https://doi.org/10.46298/cm.10305